Phosphor-Free Apple-White LEDs with Embedded Indium-Rich Nanostructures Grown on Strain Relaxed Nano-epitaxy GaN
نویسندگان
چکیده
Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template formed by regrowth of GaN over SiO(2) film patterned with an anodic aluminum oxide mask with holes of 125 nm diameter and a period of 250 nm. The growth of InGaN/GaN multiple quantum wells on these stress relaxed low defect density templates improves the internal quantum efficiency by 15% for the cyan-green multiple quantum wells. Higher emission intensity with redshift in the PL peak emission wavelength is obtained for the indium-rich nanostructures incorporated in multiple quantum wells. The quantum wells grown on the nano-epitaxially lateral overgrown GaN has a weaker piezoelectric field and hence shows a minimal peak shift with application of higher injection current. An enhancement of external quantum efficiency is achieved for the apple-white light emitting diodes grown on the nano-epitaxially lateral overgrown GaN template based on the light -output power measurement. The improvement in light extraction efficiency, η(extraction,) was found to be 34% for the cyan-green emission peak and 15% from the broad long wavelength emission with optimized lattice period.
منابع مشابه
Phosphor-free white-light emitters using in-situ GaN nanostructures grown by metal organic chemical vapor deposition
Realization of phosphor-free white-light emitters is becoming an important milestone on the road to achieve high quality and reliability in high-power white-light-emitting diodes (LEDs). However, most of reported methods have not been applied to practical use because of their difficulties and complexity. In this study we demonstrated a novel and practical growth method for phosphor-free white-l...
متن کاملPhosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology
Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED's color rendering index (CRI) are still problematic. Here, we use flip-chip ...
متن کاملControlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes.
We have investigated for the first time the impact of electron overflow on the performance of nanowire light-emitting diodes (LEDs) operating in the entire visible spectral range, wherein intrinsic white light emission is achieved from self-organized InGaN quantum dots embedded in defect-free GaN nanowires on a single chip. Through detailed temperature-dependent electroluminescence and simulati...
متن کاملAbbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire
Metalorganic vapor phase epitaxy (MOVPE) nucleation studies of GaN on planar sapphire and nanopatterned AGOG (Deposition of Aluminum, Growth of Oxide, and Grain growth) sapphire substrates were conducted. The use of abbreviated GaN growth mode, which utilizes a process of using 15 nm low-temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of ...
متن کاملEnhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers.
We demonstrate the high efficiency of InGaN/GaN multiple quantum wells (MQWs) light-emitting diode (LED) grown on the electrochemically etched nanoporous (NP) GaN. The photoluminescence (PL) and Raman spectra show that the LEDs with NP GaN have a strong carrier localization effect resulting from the relaxed strain and reduced defect density in MQWs. Also, the finite-difference time-domain (FDTD...
متن کامل